
Under review as a conference paper at ICLR 2016

Figure 3: The Net2DeeperNet Transformation
Another example is concatenation. If we concatenate the output of layer 1 and layer 2, then pass this
concatenated output to layer 3, the remapping function for layer 3 needs to take the concatenation
into account. The width of the output of layer 1 will determine the offset of the coordinates of units
originating in layer 2.

To make Net2WiderNet a fully general algorithm, we would need a remapping inference algo-
rithm that makes a forward pass through the graph, querying each operation in the graph about how
to make the remapping functions consistent. For our experiments, we manually designed all of the
inference necessary rules for the Inception network, which also works for most feed forward net-
work. This is similar to the existing shape inference functionality that allows us to predict the shape
of any tensor in the computational graph by making a forward pass through the graph, beginning
with input tensors of known shape.

After we get the random mapping, we can copy the weight over and divide by the replication factor,
which is formally given by the following equation.

U

(i)
k,j

=
1

|{x|g(i�1)(x) = g

(i�1)(k)}|
W

(i)
g

(i�1)(k),g(i)(j)

It is essential that each unit be replicated at least once, hence the constraint that the resulting layer
be wider. This operator can be applied arbitrarily many times; we can expand only one layer of the
network, or we can expand all non-output layers.

In the setting where several units need to share the same weights, for example convolution opera-
tions. We can add such constraint to the random mapping generation, such that source of weight is
consistent. This corresponds to make a random mapping on the channel level, instead of unit level,
the rest procedure remains the same.

When training with certain forms of randomization on the widened layer, such as dropout (Srivastava
et al., 2014), it is acceptable to use perfectly transformation preserving Net2WiderNet, as we have
described so far. When using a training algorithm that does not use randomization to encourage
identical units to learn different functions, one should add a small amount of noise to all but the first
copy of each column of weights. This results in the student network representing only approximately
the same function as the teacher, but this approximation is necessary to ensure that the student can
learn to use its full capacity when training resumes.

2.4 NET2DEEPERNET
We also introduce a second function-preserving transformation, Net2DeeperNet. This allows us
to transform an existing net into a deeper one. Specifically, the Net2DeeperNet replaces a layer
h

(i) = �(h(i�1)>
W

(i)) with two layers h(i) = �

�
U

(i)>
�

�
W

(i)>
h

(i�1)
��

. The new matrix U is
initialized to an identity matrix, but remains free to learn to take on any value later. This operation
is only applicable when � is chosen such that �(I�(v)) = �(v) for all vectors v. This property
holds for the rectified linear activation. To obtain Net2DeeperNet for maxout units, one must
use a matrix that is similar to identity, but with replicated columns. Unfortunately, for some popular
activation functions, such as the logistic sigmoid, it is not possible to insert a layer of the same
type that represents an identity function over the required domain. When we apply it to convolution
networks, we can simply set the convolution kernels to be identity filters.

In some cases, to build an identity layer requires additional work. For example, when using batch
normalization, we must set the output scale and output bias of the normalization layer to undo
the normalization of the layer’s statistics. This requires running forward propagation through the
network on training data in order to estimate the activation statistics.

The approach we take is a specific case of a more general approach, that is to build a multiple layer
network that factorizes the original layer. Making a deeper but equivalent representation. However it
is hard to do general factorization of layers which non-linear transformation units, such as rectified

5

