
Under review as a conference paper at ICLR 2016

y

h[1] h[2]

x[1] x[2]

a

b c

d

e f

y

h[1] h[2]

x[1] x[2]

a

b c
d

e f/2

h[3]
c

d

f/2

Figure 2: The Net2WiderNet transformation. In this example, the teacher network has an input
layer with two inputs x[1] and x[2], a hidden layer with two rectified linear hidden units h[1] and h[2],
and an output y. We use the Net2WiderNet operator to create a student network that represents
the same function as the teacher network. The student network is larger because we replicate the
h[2] unit of the teacher. The labels on the edges indicate the value of the associated weights. To
replicate the h[2] unit, we copy its weights c and d to the new h[3] unit. The weight f , going out
of h[2], must be copied to also go out of h[3]. This outgoing weight must also be divided by 2 to
compensate for the replication of h[2]. This is a simple example intended to illustrate the conceptual
idea. For a practical application, we would simultaneously replicate many randomly chosen units,
and we would add a small amount of noise to break symmetry after the replication. We also typically
widen many layers rather than just one layer, by recursively applying the Net2WiderNet operator.

layer i with a layer that has q outputs, with q > n. We will introduce a random mapping function
g : {1, 2, · · · , q} ! {1, 2, · · · , n}, that satisfies

g(j) =

⇢
j j  n

random sample from {1, 2, · · ·n} j > n

We introduce a new weight matrix U

(i) and U

(i+1) representing the weights for these layers in the
new student network. Then the new weights are given by

U

(i)
k,j

= W

(i)
k,g(j), U

(i+1)
j,h

=
1

|{x|g(x) = g(j)}|W
(i+1)
g(j),h.

Here, the first n columns of W (i) are copied directly into U

(i). Columns n+1 through q of U (i) are
created by choosing a random as defined in g. The random selection is performed with replacement,
so each column of W (i) is copied potentially many times. For weights in U

(i+1), we must account
for the replication by dividing the weight by replication factor given by 1

|{x|g(x)=g(j)}| , so all the
units have the exactly the same value as the unit in the original net.

This description can be generalized to making multiple layers wider, with the layers composed as
described by an arbitrary directed acyclic computation graph. This general procedure is illustrated
by Fig. 2. So far we have only discussed the use of a single random mapping function to expand
one layer. We can in fact introduce a random mapping function g

(i) for every non-output layer.
Importantly, these g

(i) are subject to some constraints as defined by the computation graph. Care
needs to be taken to ensure that the remapping functions do in fact result in function preservation.

To explain, we provide examples of two computational graph structures that impose specific con-
straints on the random remapping functions.

One example is the layer structure used by batch normalization (Ioffe & Szegedy, 2015). The
layer involves both a standard linear transformation, but also involves elementwise multiplication
by learned parameters that allow the layer to represent any range of outputs despite the normaliza-
tion operation. The random remapping for the multiplication parameters must match the random
remapping for the weight matrix. Otherwise we could generate a new unit that uses the weight
vector for pre-existing unit i but is scaled by the multiplication parameter for unit j. The new unit
would not implement the same function as the old unit i or as the old unit j.

4

