
CHAPTER 11. PRACTICAL METHODOLOGY

10

�2

10

�1

10

0

Learning rate (logarithmic scale)

0

1

2

3

4

5

6

7

8

T
r
a
i
n
i
n
g

e
r
r
o
r

Figure 11.1: Typical relationship between the learning rate and the training error. Notice
the sharp rise in error when the learning is above an optimal value. This is for a fixed
training time, as a smaller learning rate may sometimes only slow down training by a
factor proportional to the learning rate reduction. Generalization error can follow this
curve or be complicated by regularization effects arising out of having a too large or
too small learning rates, since poor optimization can, to some degree, reduce or prevent
overfitting, and even points with equivalent training error can have different generalization
error.

now take two kinds of actions. The test error is the sum of the training error and
the gap between training and test error. The optimal test error is found by trading
off these quantities. Neural networks typically perform best when the training
error is very low (and thus, when capacity is high) and the test error is primarily
driven by the gap between train and test error. Your goal is to reduce this gap
without increasing training error faster than the gap decreases. To reduce the gap,
change regularization hyperparameters to reduce effective model capacity, such as
by adding dropout or weight decay. Usually the best performance comes from a
large model that is regularized well, for example by using dropout.

Most hyperparameters can be set by reasoning about whether they increase or
decrease model capacity. Some examples are included in Table 11.1.

While manually tuning hyperparameters, do not lose sight of your end goal:
good performance on the test set. Adding regularization is only one way to achieve
this goal. As long as you have low training error, you can always reduce general-
ization error by collecting more training data. The brute force way to practically
guarantee success is to continually increase model capacity and training set size
until the task is solved. This approach does of course increase the computational
cost of training and inference, so it is only feasible given appropriate resources. In

430


