
CHAPTER 7. REGULARIZATION FOR DEEP LEARNING
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Figure 7.4: An illustration of the effect of early stopping. (Left)The solid contour lines
indicate the contours of the negative log-likelihood. The dashed line indicates the trajectory
taken by SGD beginning from the origin. Rather than stopping at the point w⇤ that
minimizes the cost, early stopping results in the trajectory stopping at an earlier point ˜w.
(Right)An illustration of the effect of L2 regularization for comparison. The dashed circles
indicate the contours of the L2 penalty, which causes the minimum of the total cost to lie
nearer the origin than the minimum of the unregularized cost.

We are going to study the trajectory followed by the parameter vector during
training. For simplicity, let us set the initial parameter vector to the origin,3 that
is w(0)

= 0. Let us study the approximate behavior of gradient descent on J by
analyzing gradient descent on ˆJ :

w(⌧)

= w(⌧�1) � ✏rw
ˆJ(w(⌧�1)

) (7.35)

= w(⌧�1) � ✏H(w(⌧�1) � w⇤
) (7.36)

w(⌧) � w⇤
= (I � ✏H)(w(⌧�1) � w⇤

). (7.37)

Let us now rewrite this expression in the space of the eigenvectors of H , exploiting
the eigendecomposition of H : H = Q⇤Q>, where ⇤ is a diagonal matrix and Q
is an orthonormal basis of eigenvectors.

w(⌧) � w⇤
= (I � ✏Q⇤Q>

)(w(⌧�1) � w⇤
) (7.38)

Q>
(w(⌧) � w⇤

) = (I � ✏⇤)Q>
(w(⌧�1) � w⇤

) (7.39)
3For neural networks, to obtain symmetry breaking between hidden units, we cannot initialize

all the parameters to 0, as discussed in section 6.2. However, the argument holds for any other
initial value w(0).
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